
Bifröst : Covert Data Exfiltration from
Air-gapped Network via Smart Bulbs

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari
(Mentored by Chester Rebeiro)

Indian Institute of Technology Madras

Motivation
With the rapid advancements in the Internet of Things (IoT), smart homes and offices
are going to be very popular in the near future. Houses would be equipped with various
electronics, which promise to make our lives much more comfortable. Smart bulbs would
be an integral part of smart homes. These bulbs, would permit automatic control of
lighting in a room. For example, an intelligent agent may control the color and intensity
of the light emitted by the smart bulb, thus changing the ambience of the room based
on the context. A far more important advantage is that smart bulbs can reduce energy
consumption drastically by turning bulbs off and controlling the intensity.

Smart homes, however are a double edged sword. There are growing security and
privacy concerns with the increasing ‘smartness’ of the electronic equipment used at homes.
Many of the equipment control critical operations that are related to safety and security
of homes. Further, many of the equipment monitor sensitive activities, and protecting this
information is going to be far more difficult than what the current security mechanisms
can achieve.

This project demonstrates one such security concern, where smart bulbs can be used
to steal sensitive data by means of a covert channel. The channel, which we call Bifröst1,
demonstrates how a low cost electronic equipment, such as a smart bulb, can cause major
security concerns. Bifröst permits data to be leaked over the air using various controllable
parameters of a typical smart bulb. For demonstration, we have implemented our attacks
using the Magic Bluetooth bulb2. This smart bulb permits control of various parameters
such as turning on/off, color and intensity of the light, over Bluetooth. We demonstrate
multiple attacks of how a malicious application in the control computer can create a covert
channel using the tune able knobs present in the bulb thus leaking sensitive data over an
air gap. We have generalized the implementations in such a way that, this will work for
other smart bulbs with minor changes. We also evaluated trade offs between efficiency
and error rate of the covert channel.

Background
Before going into the attack plan of Bifröst, we need to have an understanding about
smart homes infrastructure. A Smart Home is an infrastructure where a home automation
system controls home appliances, temperature, light and all the other devices. A smart
home automation system is typically controlled by a central hub and can be a completely

1The rainbow bridge of the gods from their realm Asgard to earth
2https://www.amazon.in/Generic-Bluetooth-lighting-dimmable-AC85-265V/dp/B06XC6DQL4

https://www.amazon.in/Generic-Bluetooth-lighting-dimmable-AC85-265V/dp/B06XC6DQL4

2 Bifröst

air-gapped network. A Smart Bulb is an LED bulb that allows the lightning to be cus-
tomized and controlled remotely. These devices are also connected to the internal network
and need a remote controller (or controller application) to change the intensity, color and
the brightness of the bulb. Some smart bulbs also provide advanced features such as the
change in the color based on the change in environmental conditions or with the arrival of
new emails etc.

Coffee Vending Machine

Internal Network

Remote Controller

BluetoothBulb

Lamp

Home Appliances

Television

Figure 1: Smart Home Set-up of the Lean Enterprise Advanced Knowledge
Solutions (LEAKS), Employs a complete air-gap separation for all its
internal networks, ensuring no data is leaked through public connections.
The smart bulb color is changed using the remote controller using a
Bluetooth connection.

In Smart Homes, the internal communication is managed by a hub that is connected
to all the devices as shown in Figure 1. The routers can be connected to the devices using
electrical lines X103, radio waves ZigBee4 and Z-Wave5, or Insteons6. Smart bulb use
an RF receiver which enables the bulb to connect to the controller. Most bulbs can directly
connect to the Bluetooth or Wi-Fi network. The smart bulb will receive the command to
perform some action either from a controller or directly from a mobile application. The
commands received by the smart bulb are sent for execution to a processing unit. The
processing unit controls the LED inside the bulb by using PWM (Pulse Width Modulation).
Each smart bulb will contain a set of LEDs and drivers to controls the LEDs. Different
colors and brightness level in the bulb are obtained by sending different signals to the
driver.

3https://www.x10.com/
4https://www.digi.com/resources/standards-and-technologies/zigbee-wireless-standard
5https://www.z-wave.com/
6https://www.insteon.com/

https://www.x10.com/
https://www.digi.com/resources/standards-and-technologies/zigbee-wireless-standard
https://www.z-wave.com/
https://www.insteon.com/

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 3

Reverse Engineering the Bulb
This was one of the challenging jobs for us, as none of us is dealing with Bluetooth
applications in our research. We have found many research articles, but most of them
are incomplete about the reverse engineering aspects of smart-bulb. After spending
many sleepless days, we found the method for reverse engineering the bulb. This reverse
engineering is done also with the help other android application. As the development
of those applications was out of the scope of our work, we just decided to trace the
patterns that are needed to be sent for different applications. After spending some days,
we conquered the challenge!. We could ON/OFF the bulb, without using the official app
for the bulb. That was one of the exciting moment when we realized that we can have
entire control on BLE devices.

All smart devices including the smart bulb are distinguished by their unique device ID
namely MACID or device address. Each of these Bluetooth Low Energy devices provide
certain services, which can be determined by their unique UUID’s (Universally unique
identifier). Each service has certain characteristics along with certain descriptions. The
major aim of reverse engineering is to capture the information such as which of these
services and the characteristics are writable, which helps us to alter the data and change
the functionality. The steps for reverse engineering the bulb for exploitation as follows :

• Monitor Bluetooth packet : To capture the pattern of Bluetooth packet transferred
from the smart bulb controller or the mobile application, we need to switch to
developer mode in the device, and also need to enable the "Bluetooth HCI snoop
log".

• Activate mobile application: The second step is to activate the standard smartphone
application, which helps to control the bulb. The application can then be used to
transfer some data by changing the color, intensity etc.

• Monitor the log files:All the packet that we send through Bluetooth is logged in the
log file namely btsnoop_hci.log, which is internally stored in the smartphone.

Enable

ON

btsnoop_hci.log

• Tracking the packets: Convert the log file to btsnoop_hci.pcap and capture the
packet information from these files using Wireshark.

• Monitoring Attributes: Monitor the attributes such as Attribute protocol (ATT),
which are responsible for device discovery, reading and writing data etc. Also monitor

4 Bifröst

the value fields for different Bluetooth packets, to determine the information that is
transmitted.

Captured
Packets

Packets

Packet Value (ON)

Analysis of

• nRF connect for sending the packets: We have used nRF Connect app to send this
value to characteristic ffe9 of service ffe5 - which is the writable service.

ON

ON

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 5

we’ve hacked the bulbs -now for (more) fun!
So now we’ve hacked the bulb by reverse engineering and now we could easily change the
colors of smart bulb without the help of official app. The UUID of the Magic Bluetooth
bulb is as follows: The first byte is always 56, then three bytes for the RED, GREEN
and BLUE values, and then another three bytes with values 00f0 aa. We can change
different colors by varying these values.

aa00f056 RR BBGG

As next step we need to have a floor plan for the covert data exfiltration. The plan
need an android mobile application for the sender side to control the bulb.

Bifröst : The Proposed Covert Channel Method
Smart bulb hacking is the first step for covert channel data exfiltration. The second part
of the covert channel comprises of the protocol for sending and retrieving the data from
smart bulb. The task of data exfiltration is not so simple and needs more time for getting
an accurate transmission. Also the speed of transmission and error rate is a trade off
for the covert channel. For successful data exfiltration, we would need to make certain
assumptions for the implementation of the covert channel.

Assumptions
The assumptions that we adopted place a major role in the covert channel data exfiltration,
which we enumerate here.

1. A major assumption is that one of the internal nodes in the air-gapped network is
compromised, and which helps to send data to the outside world with the help of
the smart bulb.

2. The compromised device uses a malicious application that helps to change the color
of the smart bulb, based on the encoding technique the sender and the receiver
decide apriori.

3. The maximum distance at which the attack can be possible is based on the strength
of the receiver. We evaluated two low cost receivers: a webcam and light sensor. The
attack strength can be increased with the help of a high-resolution camera and a
telescope to focus the smart-light.

4. We make use of two receiver setup in two different scenario. If the smart bulb is fixed
to a single color, then the message encoding and decoding are done using different
intensity levels of the particular color. Also if the bulb is switching between multiple
colors the encoding and decoding scheme depends on the number of colors that can
be detected using the webcam.

5. For long distance attack, we assume that there are no environmental disturbances
(such as heavy rain and storms), which can affect the correctness.

6 Bifröst

Overview
Our covert channel data exfiltration mainly includes two parts : a transmitter (sender)
and a receiver.

• The transmission setup comprises of a smart bulb (which is visible to the outside
world) that is connected to an air-gapped network. The smart bulb can be controlled
by the official application with in the network. We have used our malicious application
to control the smart bulb based on the requirements.

• The receiver setup is based on the attack plan we choose. i.e, we assume two attack
plans as follows:

– The receiver setup includes a webcam to detect color, light, and intensity of
the emitted light.

– the setup includes an android light sensor application that can detect different
light intensity (when the bulb is fixed to a single color).

The bulb we consider has two important features. It can provide different shades of a
single color and can also switch between multiple colors (can call it as a disco mode!). We
use these two features for constructing two different covert channels and demonstrate that
each of these features result in different properties for the covert channel. The first plan
(plan 1) uses different color shades of the same color, while the second plan (plan 2) uses
different colors for transmission

In the figure below, we provide a pictorial representation of the entire attack plan. For
demonstration we include the receiver setup for attack plan 2 (when bulb switches between
multiple colors).

Smart Bulb

Receiver
Malicious app

Window

Camera

Light Transmitted

Internal Network of Smart Home

Controller

Computer

Figure 2: Setup for attack Plan 2 of BIFRÖST. Within the internal network,
the smart bulb controller contains a malicious application that manages
the changes in color and intensity of the smart bulb. Receiver setup for
ATTACK PLAN 2 includes a Camera and the computer, and for ATTACK
PLAN 1 includes a light sensor application

Figure 3 shows the overall implementation plan of Bifröst. The block diagram includes
the step by step implementation of the sender and the receiver setup, for encoding and
decoding the message. The block diagram includes the algorithms that we used for sender
and the receiver implementation. We have also included the steps where we failed in the
implementation.

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 7

Add
Encoding

Huffman Hamming

Code Padding

Add

Syn bit RGB valuesMessage Send Packets

Remove
Syn bit

Select

Predict

RGB value

Append packets

till EOC
Remove padding

Huffman Tree

Parse
Received Packets

Sender(Malicious App)

Receiver(Camera/Mobile Light Sensor)

Error Correction

Message

(with error)

Word2vec, Spell checkerMessage

Figure 3: Overall implementation plan of BIFRÖST. The sender(malicious
application) - procedure for converting the message to packets. The de-
coding method is same in both the attack plans except the platform for
implementation.

Encoding Technique (some encoding results!)
The sender in Figure 3, gives the overall idea about the encoding technique. We have
used huffman encoding for encoding the message. We also have added padding bits and
synchronization bits wherever necessary for encoding the message. We would like to
demonstrate some important details about the algorithms with some examples in the
following part of the section.

Huffman encoding

We have used Huffman encoding7 for converting the message to bit strings. The major
advantage of Huffman encoding is that the average number of bits is less compared to
ASCII encoding. For example consider the message in the text box below:

"The quick brown fox jumps over the lazy dog.Its the possibility of having a dream
come true that makes life interesting.You never really understand a person until you
consider things from his point of view.We accept the love we think we deserve.There
is no greater agony than bearing an untold story inside you.Nothing in life is as im-
portant as you think it is, while you are thinking about it.All the Light We Cannot
See.But What if We are Wrong.Its only after we have lost everything that we are free
to do anything.Jesuschrist@12345"

These set of messages were used for our analysis. The total number of characters is
536. The performance gain in using Huffman encoding is as follows:

7https://ieeexplore.ieee.org/document/4051119

https://ieeexplore.ieee.org/document/4051119

8 Bifröst

Total chars = 536 ==> Total bits (ASCII) = 536*7 = 3752
Total bits (Huffman) = 2496
Avg.bits per char(Huffman) = 4.66
Performance gain = 1256 bits = 33.4 %

We have created the Huffman tree based on the "Bhagvadgita.txt" file, which includes
almost all the ASCII characters. Following table includes the final bit pattern for each
character for our encoding scheme.

Decimal Character Huffman Code Decimal Character Huffman Code Decimal Character Huffman Code Decimal Character Huffman Code

9 Tab 00101101111000010 55 7 0010110110001 80 P 110000010 105 i 0011

10 Newline 01110 56 8 1100001110101 81 Q 0010110111110 106 j 101001000

32 Space 111 57 9 0010110111010 82 R 101001110 107 k 0010011

33 ! 11000000 58 : 0010001010 83 S 10100110 108 l 10001

34 " 101100000 59 ; 00100101 84 T 1000001 109 m 101000

35 # 10110000100 60 < 001011011101100 85 U 1010011111 110 n 0100

36 $ 10110001100011001 61 = 001011011110001 86 V 1010011110 111 o 0110

37 % 00101101111000011 62 > 001011011110010 87 W 110000011 112 p 1100010

38 & 1011000110001101 63 ? 00101101101 88 X 001011011100 113 q 0010001001

39 ' 001011010 64 @ 10110001100011000 89 Y 1011000011 114 r 11001

40 (001000101101 65 A 11000110 90 Z 001011011101110 115 s 0001

41) 001000101100 66 B 110001111 91 [10110000101 116 t 1001

42 * 001000101111 67 C 1100001111 92 \ 001011011101101 117 u 101110

43 + 1011000110001111 68 D 101001010 93] 10110001101 118 v 1000000

44 , 101111 69 E 00100100 94 ^ 001011011110011 119 w 100001

45 - 0010111 70 F 101100010 95 _ 1011000110001110 120 x 0010001000

46 . 0010000 71 G 101001011 96 ` 0010110111100000 121 y 001010

47 / 0010110110000 72 H 00100011 97 a 0101 122 z 1100001110100

48 0 001011011001 73 I 11000010 98 b 1011001 123 { 101100011000100

49 1 11000011100 74 J 001000101110 99 c 101010 124 | 101100011000101

50 2 110000111011 75 K 1011000111 100 d 01111 125 } 001011011101111

51 3 101100011001 76 L 101001001 101 e 1101

52 4 1011000110000 77 M 00101100 102 f 101101

53 5 0010110111111 78 N 110000110 103 g 101011

54 6 0010110111101 79 O 110001110 104 h 0000

Add Padding Bits and Synchronization bit

The number of bits per packet depends on the number of colors or intensity that we can
detect using the receiver setup. In order to have equal number of bits per packet we
add padding bits wherever required . The addition of synchronization bit (syn bit) is to
distinguish between two incoming packets and to discard duplicate packets.

We have used character by character encoding scheme for better efficiency. Hence at
the end of each character we need to send EOC (End of Character), which can be an out
of range intensity in plan1 and different color in plan2.

Demonstrating an example of encoding in attack plan1 - with varying intensity. Con-
sider that the sender want to send message "Eat". The figure below shows the various
levels of intensity for bulb fixed to red color. Assume that we have fixed the intensity
range from 100 -228, where below 100 and above 228 can be used as EOC.

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 9

Figure 4: Different intensity levels for red light, where the width of each
levels is 4

For encoding the message Eat, where the binary values of each character is as follows:

E : 00100100 a : 0101 t : 1001

Since we have the usable range from 100 - 228 and the width of each level is 4, therefore
we can have 32 different levels(resembling 5 bits per packet). As each packet contains 4
bit information and a syn bit so a single character can be splitted into multiple packets.
The end of character can be detected using EOC. The implementation is shown in figure
below. After adding the syn bit and padding bits the hexadecimal value of message bit is
taken and appended with the RGB values of each packets.

Syn bit

Message binary

Hexadecimal value
of levels

Packets

End of Character

Figure 5: The conversion of the packets to different intensity levels. Con-
version uses the intensity levels given in Figure 4.

Malicious Application
The malicious application that we developed is the back bone of Bifröst. Without this
application, our attack plan is practically impossible. The two important feature on the

10 Bifröst

application is as follows:
(1) Bulb switching between multiple colors : Assume that smart bulb is switching

between multiple colors, then we require a malicious application to change the color of the
bulb, depending on the data that has to be transmitted.

(2) Bulb fixed to a single color: Assuming that the bulb is fixed to a single color, then
covert channel data exfiltration needs to be restricted to that specific color (assume bulb
is fixed to red color). In order to transmit the message effectively, we need to play around
with different intensity levels of red.

varying intensity

changing colors

Send message

send message

Search devices

OFF
ON

The android app have different features, such as send message and send message colors,
which can be used for attack plan 1 and plan 2. The different color buttons in the app is
for sending that particular color to the bulb and get binary is for getting the binary of
the string that we have sent. The enable button is for enabling the multiple color mode.

Receiver Setup with Webcam:
The aim of this attack is sending data when the bulb is in multi-color mode and the
attacker is taking advantage of this mode for data transmission. But the challenging
task here is to send the data as stealthy as possible in such a way that the change in the
color should not be perceptible to the outside world. In this setup, we used a webcam for
reading/capturing colors from the bulb. All the processing steps are done using MATLAB
setup, with the help of the webcam connected to the system. The following images depict
the setup of webcam that captures color values at 30fps. Figure 6 shows the overall view
of the receiver setup.

Each data transmission is enclosed by start and end packets as shown in the encoding
part. The packets send to the bulb are captured using Webcam, which is connected to a
MATLAB setup. As soon as the start of packet is received, all the upcoming packets are
stored till the End of packet is received. Based on the stored packets we will calculate
the RGB values of each frame. Considering the example of "Skynet is alive!", the RGB
value obtained is as shown in Figure 7.
MATLAB decoding script will scan the received RGB stream and develop color stream
on each frame. These color stream will be processed further for extracting the information.
We have used 8 basic colors such as Cyan, White, Blue, Pink, Green, Orange, Red and
Yellow for date exfiltration. As we could send 3 bit at time, we make use of 2 bit for
information and 1 bit for synchronization bit. An example color stream, that we processed
for the above message is as follows:

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 11

Figure 6: The receiver setup when bulb is switching between multiple colors.
The right side shows the webcam view in MATLAB for processing the data.

0 100 200 300 400 500 600

Number of Frames

0

50

100

150

200

250

R
G

B
 I
n
te

n
s
it
y
 L

e
v
e
l

Red

Green

Blue

Figure 7: RGB values of the message in terms of number of frames vs intensity
levels

All the packets are appended together after removing the syn bit, until we receive the
end of character. The step of decoding is straight forward as encoding, the bit pattern is
matched with the Huffman tree. The advantage of decoding character by character is that
a bit error in one character will not affect the upcoming characters and provide better
efficiency.

12 Bifröst

0 100 200 300 400 500

Number of Frames

No value

Yellow

Red

Orange

Green

Pink

Blue

White

Cyan
R

G
B

 L
e

v
e

ls

Figure 8: Prediction of colors using RGB values

The above figure shows that the MATLAB script decodes the information with few
errors.In the later part, we will see how these errors can be corrected using error correction
schemes.

Receiver Setup with Light Sensor
The implementation of the attack plan is same as that the overall plan given in Figure 3.
We have developed the android application that makes use of the intensity values from the
light sensor and decodes the message based on the obtained values.

The figure below shows the receiver setup that we have used to exfiltrate the data from

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 13

the smart bulb. The left one shows how it detects the variation in light intensity and right
one shows the actual view of the android application, which displays the real time decoded
message.

Real Time
Decoded Message

Corrected Data

Message in
Binary

Spell checker

We have used the reverse of the encoding scheme as shown in Figure 5. The decoding
process should generate the intensity levels based on the current values obtained from the
light sensor. From the intensity values obtained, we need to predict the decimal value,
then remove the syn bits from the binary and append the packets until we get an EOC.
The obtained binary is parsed through the Huffman tree to decode the character.

Figure 9 shows the decoding of the message at the receiver end. The intensity levels
shows the matrix created at the receiver for the red light. After the range is fixed, the
variation in the intensity levels is measured to obtain the packets(marked in red - Packets
received). Append the packets after removing the syn bits. The final characters obtained
is marked in green.

Intensity Levels
Packets received

Removing Syn bits

Packets received

Packets received

Message Received

Figure 9: Decoding the Message using the receiver setup

14 Bifröst

Error Correction and Prediction using NLP
So far we have seen, Bifröst is capable of receiving messages through covert channel (with
few errors in case of higher bandwidth and stealthy conditions). The rate of error will vary
depending on the environmental conditions and the strength of receiver setup. The error
rate can be effectively reduced with the help of a word predictor using spell checker as
well as NLP based tools such as Word2vec(if both parties are agreed upon transmitting
the domain specific messages).

In Bifröst, we have two level of error correction scheme. In the first level, most of the
erroneous words can be easily corrected(one or two vowel character missing) using a python
spell checker. Moreover if we know the domain/context of the data being transmitted,
prediction can be done with the help of NLP tool Word2vec. It is a 2-layer neural network
which stores distance between each word with other words that are present in the training
data.

In the example given below, words with missing vowels are corrected with the help of
spell checker, but which cannot be effective for multiple character errors. But word2vec is
able to predict such errors with more accuracy.

Actual Message : I really want to go to work, but I am too sick to drive.

Text Received : I rexlly waxt to go to w??k, b?t I am tao s?ck to dr?ve.

After Spell Correction: I really want to go to work but I am tao sick to
drove

After Error Prediction: I really want to go to work but I am too sick to
drive

Evaluation
We would like to evaluate the effectiveness of Bifröst for the covert channel data exfiltration
using smart bulb. Even though the demonstration of the covert channel is done on Magic
Bluetooth Bulb, Bifröst attack plan can be efficiently used for other IoT devices also.
We analyzed the Smart Bulb case study in several environmental conditions. We would
like to demonstrate some of these result of the data exfiltration based on the factors of
stealthiness, bit rate etc.

Throughput and Effectiveness :
Throughput and Effectiveness of the implemented attack includes bit rate at which
the proposed method can exfiltrate data, and the distance at which these data can be
meaningfully received and processed by an appropriate receiver.

• When the receiver setup is mobile light sensor: Figure 10 shows throughput
that we obtained when we send different number of bits per packets. The table below
shows the how the throughput value changes when the bits per packets decreases
from 7 to 4.

Figure 11 shows the error rate for various packet sizes. X axis represents transmitted
bits per second and Y axis represents the error rate. i.e, for sending 4 bit per packets

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 15

at a delay of 500 ms the transmitted number of bits per second is 7.9 bits. The graph
shows the change in error rate when the packet information increases from 4 to 7.

Figure 10: Throughput for different number of bits per packet

Bit Rate vs Error Rate

7.9 9.89 11.88 13.85

Bit Rate(bps)

0

5

10

15

20

25

30

35

40

45

E
rr

o
r

R
a

te
 (

%
)

Red

Green

Yellow

White

Pink

Average Error

Figure 11: Graph for Bit rate vs error rate when the receiver setup is mobile
light sensor

• When the receiver setup is Webcam: Figure 12 shows the bit rate vs success
rate, for varying speed for sending the packets. The analysis is done for varying
speed from 500 ms to 100 ms.

16 Bifröst

5 10 15 20 25 30

Bit Rate(bps)

55

60

65

70

75

80

85

90

95

S
u

c
c
e

s
s
 R

a
te

 (
%

)
Success Rate vs Bit Rate

Figure 12: Graph for Bit rate vs error rate when the receiver setup is
webcam

Stealthiness :

We define Stealthiness as the width of each level of intensity.

• The receiver setup is light sensor: We could have different intensity range that
make the attack stealthier. We have done different analysis based on different width
such as 8, 4, 2, 1. The stealthiness increases with the decrease in width from 8 to 1
providing that the bits per packet is constant. Graph 13 demonstrate the stealthiness
vs error rate analysis done for different colors.

From the graph it is clear that as the stealthiness levels changes from 8 to 1, the
error rate increases. From the graph we could have a trade-off between error rate and
stealthiness. So for better efficiency we need to increase the width for each levels.

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 17

Stealthiness vs Error Rate

8 4 2 1

Distance between levels

0

10

20

30

40

50

60

70

80

90

E
rr

o
r

R
a

te

Red

Green

Blue

Yellow

White

Average Error

Figure 13: Graph for Bit rate vs error rate when the receiver setup is mobile
light sensor

Generality :
Using the same reverse engineering technique we can hack any IoT device. The data
exfiltration part varies depending on the IoT devices used. For example in smart bulb
we used light as the medium where as in bluetooth speakers we may need some other
parameters such as audio visualization. Hence these attack plans can be easily adopted for
other IoT devices.

Analysis Results
We would like to demonstrate some more results for the various analysis that we have
done for the both the receiver setup.

Noise Analysis :
For the receiver setup with mobile light sensor, we have added noise using the other
bulb placed beside the bulb used for data exfiltration and by varying the intensity of the
white light in the second bulb. Figure 14 shows that the increase in error rate when the
surrounding white light intensity increases from 0 to 100 %. From the results it is clear
that our covert channel model gives better results with less noise or interference.

Distance Analysis :
For the receiver setup with webcam, we have varied distance between the bulb and the
webcam for covert data data exfiltration. Figure 15 shows the error rate vs distance. The
figure signifies that error rate is directly proportional to the distance.

18 Bifröst

Figure 14: Graph for noise rate vs error rate

Figure 15: Graph for distance rate vs error rate

Some conclusion:

The table below shows the 3-D view of error-rate for a given bit rate and a stealth value.
From the table it is clear that to obtain around 90 % accuracy we need to fix the bit rate
to 7.9 bits per second (4 bits per packet) with the width between levels as 8.

From the table it is also clear that there is a trade off between speed and error rate.
For better speed of 14 bits per second we could have an accuracy of 63%

Muhammad Arsath KF, Sourav Das, Keerthi K, and Sugandha Tiwari (Mentored by
Chester Rebeiro) 19

Learning’s and Inferences
Attack-I: Bulb switching between multiple color

• Initially we have tested our receiver(webcam) by placing around 5 meters from the
bulb. Due to the environmental conditions and no option for focusing the bulb using
the webcam, we failed to detect the the colors from the bulb.

• In order to exfiltrate the data from the received color stream, the initial plan was
to sample a particular frame rather than parsing the entire frames based on the
frequency at which the encoder is sending the data. But as we are using colors with
different wavelengths, it was very challenging to go with the frequency.

• We tried online processing of data at decoder, which ended up in very less success
rate. As there is a processing delay in decoder, due to which synchronization between
the encoder and the decoder have lost.

• We were conservative on choosing RGB ranges to predict the colors from received
data stream. But for transition to a particular colour from different other colours it
behaves differently. In order to handle the RGB boundary on each levels, we used
ratio between red, green and blue bands which gave good results in most of the
scenarios.

Attack-II: Bulb switching between different intensity levels
• Hamming Code : We were expecting to have a better result after adding hamming

code for error correction. But our plan failed because we were receiving multiple bit
errors.

• Our initial implementation did not had end of character packet. We were taking the
Huffman binary equivalent of the whole sentence and dividing into multiple packets.
Hence one packet can have bits from multiple characters. As we were decoding using
the Huffman tree a single bit error in a character can affect the upcoming characters.

